Digits

A digit is a single number

There are 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

Every other number is made from combining these digits

1 digit numbers

0

1

2

3

J

4

5

6

7

8

9

Digits

Can you think of some 2 digit numbers?	Can you think of some 3 digit numbers?	Can you think of some 4 digit numbers?
13	467	1,256
26	312	7,893
34	897	4,674
57	692	9,032
89	158	5,810
All the numbers	All the numbers	All the numbers from
from 10 to 100	from 100 to 1,000	1,000 to 10,000

Place Value

Value means what something is worth

The place of a digit decides its value

What is the value of the blue digits in each number?

1 3 7

10 36 71

100 **3**39 **7**68

1,000 **3**,672 **7**,295

Partitioning 2-digit numbers

So when we partition 2-digit numbers we we split them up in to their tens and units

Partitioning 2-digit numbers

So when we partition 2-digit numbers we we split them up in to their tens and units

Partitioning 3-digit numbers

So when we partition 3-digit numbers we we split them up in to their hundreds, tens and units

Partitioning 3-digit numbers

So when we partition 3-digit numbers we we split them up in to their hundreds, tens and units

Partitioning 4-digit numbers

We partition 4-digit numbers in to their thousands, hundreds, ten and units

$$1,256 = 1,000 + 200 + 50 + 6$$

$$8,173 = 8,000 + 100 + 70 + 3$$

Tenths

Units can be split in to tenths

10 tenths make 1 unit

Units tenths

Hundredths

Units can also be split in to hundredths

100 hundredths make 1 unit

hundredths Units

Numbers with decimal places

Numbers with decimal follows the same rules

The further to the left a number is, the more it is worth

Place Value

Value means what something is worth

The place of a digit decides its value

What is the value of the blue digits in each number?

1

3

7

0.1

0.3

0.7

0.01

0.03

0.07

0.001

0.003

0.007

Zeros after the last digit

In numbers with decimal places, zeros after the last number do not change the value of the number

The numbers in the same colours below have the same value as each other, despite the extra zeros on the end

8 8.0

2 2.00

5.1 5.10

7.35 7.350000

Partitioning numbers with decimal places

So when we partition numbers with decimal places we we split them up in to their units, tenths, hundredths and thousandths

Partitioning numbers with decimal places

$$0.752 =$$

So when we partition numbers with decimal places we split them up in to their units, tenths, hundredths and thousandths

Partitioning numbers with decimal places

When we partition numbers with decimal places we split them up in to their units, tenths, hundredths and thousandths

$$4.975 = 4 + 0.9 + 0.07 + 0.005$$

$$1.256 = 1 + 0.2 + 0.05 + 0.006$$

$$8.173 = 8 + 0.1 + 0.07 + 0.003$$